ACCREDITATION & QUALITY ASSURANCE


This article presents a progress report on the RAND Corporation’s Council for Aid to Education’s (CAE) Value Added Assessment Initiative (VAAI), a project dedicated to measuring the degree to which postsecondary institutions develop student abilities and funded by a consortium of major foundations. The VAAI assesses general intellectual skills fostered by liberal education such as writing, higher order thinking, problem solving, and quantitative reasoning. Authors tout the VAAI as a vehicle for diagnostic feedback to students and faculty, a source of empirical evidence for policymakers, and a tool promoting curricular alignment between K-12 and postsecondary education.


Recognizing that measures have been created to accurately measure the contribution K-12 education makes to the nation’s education capital (defined as the national reservoir of knowledge and skills) and that postsecondary education is critical to national economic vitality, the authors argue for the collection of comparable information regarding collegiate learning to inform state and national education policy. Preliminary strategies suggested include: beginning with established national objectives for learning (critical thinking, communication, and problem solving), sampling the entire college-age adult population to facilitate value-added comparisons, using measures that will allow for state-by-state comparisons, and starting with voluntary state participation.


This study examined the relationship between general education coursework and performance on the ETS Tasks in Critical Thinking, a performance measure designed to test analysis, inquiry, and communication through completion of nine tasks in the humanities, social sciences, and natural sciences. A random sample of students at one institution was administered five of the nine critical thinking tasks at the end of their sophomore year, and tasks were rated by both institutional faculty and ETS staff. Quantitative analysis of results revealed moderate correlations between SAT scores and task performance, with SAT verbal scores evidencing a stronger relationship with task performance than SAT math scores. Furthermore, general education course grades exhibited little to no relationship with task performance, while student major exhibited no relationship at all with task performance.

This report provides a comprehensive review of the current role of accreditation in the United States and considers its future. The monograph consists of six chapters that address institutional and programmatic accreditation. Chapter 1 examines the need for the nation’s higher education system to improve its performance and the role of accreditation as the main quality assurance mechanism within this system. This chapter presents seven important trends in higher education that will have major impacts on how accreditation operates. Chapter 2 provides a brief history of accreditation in the United States for each of the four major types of accrediting organizations—regional, national faith-related, national career-related and programmatic. Chapter 3 focuses on the relationship between accreditation and the academy. Chapter 4 examines the relationship between accreditation and government. Chapter 5 is an assessment of accreditation’s strengths and areas of challenge. This chapter considers a set of enduring issues that are embedded in accreditation practice. The final chapter identifies issues for the future of accreditation in seven areas: governance, substance, learning outcomes, differentiation, consistency, transparency and globalization. The principal audiences for this monograph are policy leaders at institutions, higher education associations, accrediting organizations and government agencies.


The author reviews four key choices to be made when designing a campus-based assessment program. First, one must determine assessment intent by answering questions such as: How will the results be used?; At what level will the assessments take place (i.e., student, program, or institution)?; From whose perspective should success be judged (i.e., students, employers, or policymakers)? Second, one must decide what outcomes to assess (i.e., knowledge, skills, attitudes and values, behavior). Third, one must choose the method of assessment (i.e., standardized testing, local exams, individualized assessment, survey questionnaires, behavior tracking). Finally, five practical guidelines are offered for implementing a campus-based assessment program: 1) Capitalize on existing information; 2) Create a visible center for assessment activity; 3) Experiment with pilot programs; 4) Discover and critically evaluate existing model programs; and 4) Use the results in identifiable ways.
Noting the recent emphasis on student learning outcomes assessment as a one-size-fits-all policy solution, the authors of this article attempt to set forth a conceptual framework to align assessments with valued student outcomes. A framework for cognitive outcomes is offered, one based in an understanding of intelligence as crystallized, fluid, and general, and including broad abilities (verbal, quantitative, and spatial reasoning), abilities across broad domains such as the humanities, social sciences, and hard sciences (reasoning, comprehending, problem solving, and decision making), and domain-specific knowledge (declarative, procedural, schematic, strategic). Alignment between the proposed conceptual framework and established measures is advocated, so that the appropriateness of a particular measure should be judged by the type of ability to be assessed. In closing, the authors offer six maxims for best practice in assessment: 1) Assess personal, social, and civic abilities as well as cognitive ones; 2) Encourage real dialogue and greater agreement on the content of assessments; 3) Recognize that what we test and make public will greatly influence what is taught and what is learned; 4) Achieve clarity in the debate about what to assess through use of a conceptual framework; 5) Develop multiple and varied assessments; and 6) Distribute meaningful feedback on assessment results to all stakeholders.


This study attempted to test whether new standards established by the Accreditation Board for Engineering and Technology (ABET), Engineering Criteria 2000 (EC2000), made an impact on engineering curriculum, and in turn, affected student experiences and learning outcomes. Drawing from 203 engineering programs at 39 institutions nationwide, this study surveyed: 147 program chairs to determine curricular changes; 1,243 faculty to measure course-level instructional changes, participation in professional development activities, assessment of student learning, and changes in faculty rewards; and 9,696 students (5,336 graduates of 1994 and 4,330 graduates of 2004) to examine student demographics, levels of participation in out-of-class activities related to engineering education, student-learning outcomes, classroom experiences, and career plans. Factor analysis was conducted to yield composite variables for program change, student experiences, and student learning outcomes. After controlling for student precollege characteristics (age, gender, SAT/ACT scores, transfer status, race/ethnicity, family income, parents' education, high school GPA, and citizenship), institutional characteristics (type of control, Carnegie Classification type, size, and wealth), and engineering program characteristics (participation in an NSF coalition and engineering discipline), analysis of covariance (ANCOVA) was used to examine the effect of a number of
program change variables on student experiences (collaborative learning, instructor interaction and feedback, clarity and organization, program encouragement for openness, perceived program climate, internship/co-op, student design competition, professional society involvement) and student learning outcomes (applying math and science, experimental skills, applying engineering skills, design and problem solving, communication skills, group skills, societal and global issues, ethics and professionalism, life-long learning). Study findings reveal that implementation of the EC2000 curriculum resulted in an increase in program emphases on communication, teamwork, use of modern engineering tools, technical writing, lifelong learning, and engineering design. Moreover, faculty reported increases in active learning pedagogies, such as group work, design projects, case studies, and application exercises. When compared to 1994 graduates, 2004 graduates reported more collaborative work, interaction with instructors, study abroad experiences, involvement in engineering design competitions, and involvement in professional society chapters. Finally, 2004 graduates reported greater gains than their 1994 peers on all 9 learning outcomes measured, suggesting that accreditation standards can indeed improve student learning outcomes.