DOCTORAL TRAINING IN EDUCATIONAL PSYCHOLOGY & APPLIED DEVELOPMENTAL SCIENCE (EP-ADS)

Guidelines for Students Entering in Fall, 2015
http://curry.edschool.virginia.edu/ep-ads
Doctoral Training in Educational Psychology & Applied Developmental Science (EP-ADS)
Guidelines for Students Entering in Fall, 2015

Program Overview
The Educational Psychology and Applied Developmental Science (EP-ADS) program focuses on studying and improving the social and cognitive lives of children and adolescents. EP-ADS students learn theory and research on how school and out-of-school settings influence learning and development. Students have hands-on experience developing and evaluating interventions designed to support children and youth to become important, contributing members of society. Course work provides content in educational and applied developmental psychology as well as research design, methods and statistics. EP-ADS faculty and students work together closely, fostering a productive, engaging, and exciting learning environment.

Four features of EP-ADS stand out.
- EP-ADS is an interdisciplinary program. The challenges facing children and youth do not fit neatly into a single, narrow domain of study. EP-ADS faculty draw from education, psychology, education policy, as well as other disciplines.
- EP-ADS faculty and students view rigorous research designs, advanced methodologies and data analytic procedures as important research tools. Students learn that choosing a research design and/or analytical approach depends upon the research question addressed.
- EP-ADS takes a strengths-based approach to understanding the complex challenges that children and youth face in their homes, schools, after-school programs, and communities. Students learn to develop interventions that promote optimal functioning for children and youth and develop an understanding of how to assess the extent to which interventions are more or less effective for some children/youth than others.
- EP-ADS work is relevant and applied. Many of the important research questions emanate from challenges that teachers, school administrators, communities and policy-makers face on a day-to-day basis.

The Educational Psychology-Applied Developmental Science (EP-ADS) program is housed in the Educational Leadership and Policy Department (EDLF) in the Curry School of Education at the University of Virginia.

1 Approved for the Academic Year 2015-2016
Faculty
Faculty members work with students in close mentorship to address the training aims of the EP-ADS. The program has a mentorship model; students typically work intensely with between one and three faculty members during the course of their program.

The EP-ADS program is based in the department of Educational Leadership, Foundations and Policy (EDLF), chaired by Carol Tomlinson. All EP-ADS faculty work at the Curry School of Education; their primary affiliation may be with EDLF, the Center for the Advanced Study of Teaching and Learning (CASTL) and/or Youth Nex. EP-ADS has approximately 20 affiliated faculty members—more than what is typical in EDLF or at the Curry. All EP-ADS faculty were initially drawn to EP-ADS because of the alignment between their research and EP-ADS training goals. As a result, all EP-ADS faculty are active researchers who provide enriched mentorship opportunities to doctoral students. To read about EP-ADS faculty and their areas of interest, see the EP-ADS website: http://curry.edschool.virginia.edu/ep-ads

Goals and Expectations
The EP-ADS doctoral training program requires approximately four years of full-time study. Graduates of EP-ADS are prepared to acquire positions in private and public universities, private institutions and agencies, and governmental agencies. To date, all EP-ADS students have attained positions utilizing their new skills and competencies upon graduation.

The program offers two core experiences to develop student competencies: interdisciplinary coursework and research apprenticeship. These two core experiences interrelate. Students apply knowledge and skills from their classes to their research apprenticeship experiences. Students use ideas, data sets, and research questions from their apprenticeship experiences in their course assignments and projects.

In addition to these two core experiences mentioned above, students starting in Fall, 2014 (or beyond) who are enrolled in VEST will also engage in practitioner-oriented experiences in a field setting (e.g., a school district, state policy-making agency). More information will be available to students in late 2015 or early 2016.

The EP-ADS core experiences are designed so that upon completion of the program, students have a rich understanding of the classroom, school, and other social environments that serve risk or protective roles in children and youth development. Further, these core experiences help students develop a keen awareness of the current state of knowledge in educational psychology and/or applied developmental science. Upon the completion of their program, students will have specific products that demonstrate their newly acquired knowledge and competencies—students will have presented work at conferences, published papers and/or chapters, and/or contributed to submitted grants.

Interdisciplinary Coursework
All students enroll in a series of courses that comprise the foundation requirements. These courses will be common among all EP-ADS students, with limited choice and substitution. These courses are research intensive and rigorous. In some cases, students enter the program having taken very similar courses in other programs. The student may consult with his/her advisor and the advisor may recommend and approve substitutions.

All students enroll in three courses on human development. Students choose two of three development courses (e.g., child, adolescent, adult). Plus, students choose one topical
development courses (e.g., Cognitive Development). Students may be exempt from one or two of these required courses if they previously completed a masters or doctoral level course with comparable content. Again, this is decision made in consultation with the student's advisor.

Students enroll in a series of methods courses. To acquire skills in quantitative methods, students typically take Stats 2, 3, and 4. Students work with their advisor to choose the statistics course that best matches their level of knowledge upon program entry. (Most students begin with Stats 2 or 3 because they completed Stats 1 or the equivalent prior to beginning the program.) All EP-ADS students are required to take Qualitative Methods 1 because of its increasing importance in the field. Further, effective research requires knowledge of data management. Although not required, faculty recommend that students enroll in data management.

Students choose a methods specialization to obtain sufficient depth in the key methods they use (or plan to use) in their doctoral research. The methods specialization includes one seminar in advanced statistics plus one additional methods course. Students may select to enroll in courses such as Mixed Methods, Measurement Theory, Single Subject Research, Item Response Theory, among others. (Note: VEST fellows must select an Education Science methods specialization that includes one course in causal inference and another course in field experiments.)

Each student develops an individualized program of study called a specialization. The specialization consists of an organized set of coursework focused on a particular topic. The trainee identifies a specialization with support from his/her advisor. The purpose of the specialization is to give the student an opportunity to explore a single topic from different disciplinary perspectives and with sufficient depth. The specialization is comprised of 12 hours of graduate coursework, including 6 hours within the Curry School of Education, 6 hours in departments outside of the Curry School. Typically, students enroll in two courses from departments including, but not limited to Economics, Sociology, Psychology, Policy, Statistics, and/or Health Sciences.

Most students acquire teaching experience while at Curry. Students enroll in Internship in Teaching as a mechanism for obtaining that experience. In addition, EP-ADS students enroll in the Proseminar during their first two years of the program. Proseminar involves discussing papers presented by faculty presenters at the Curry Speaker Series. (Note that 2015-2016 will be the last year of Proseminar, after which proseminar will be replaced by a new course in education science.) Students enroll in directed research (3 credits per semester) during their first three years. All students enroll in dissertation credits in their final year (9 to 12 credits per semester).

Research Apprenticeship and Independent Research

Students engage in a research apprenticeship with a faculty member (or more than one faculty member) each year of their training. Most students have the same advisor over the 4 years. However, we recommend that students take advantage of opportunities for training with other EP-ADS faculty, as well. Often opportunities to conduct research with more than one faculty member arises organically when one faculty member collaborates with another. If not, students are encouraged to develop a line of research that will lend itself to primary work with one faculty member and secondary engagement with another EP-ADS faculty member.

During the fall of each year, first year students identify a focus for their work and mentor(s) for their year-long apprenticeship (lasting fall, spring, and summer). In subsequent
years, students develop their apprenticeship plan during the summer of each year of training with the support and guidance of their advisor and mentor(s). The apprenticeship plan identifies the focus of training, specific training activities and goals, and planned products (e.g., conference presentation(s), manuscript(s), grant proposal(s)). Students use the EP-ADS Competency Matrix and Annual Research Plan Document to identify existing competencies and areas for growth and to map out ongoing research activities and planned products. Both the EP-ADS Competency Matrix and the Annual Research Plan Document are available on the Curry website. (See: http://curry.virginia.edu/resource-library/ep-ads-doctoral-program-documents-for-annual-review-meeting.)

Trainees register for 3 credits of directed research (doctoral research apprenticeship) each semester for which they are expected to complete a minimum of 10 hours of research each week during the first and second years of study and more during the third and fourth years. (VEST fellows are expected to complete 20 hours of directed research each week for all four years.) During this apprenticeship, the student will assist with their advisor’s/mentor’s research and scholarship. Actual activities typically include data collection, coding, quantitative or qualitative data analysis, library research, presentations, writing for publication, and other related activities.

Students identify a secondary mentor by the middle of their third year of graduate study. Typically, the student selects a secondary mentor with consultation from his/her advisor. The secondary mentor is someone beside their mentor who offers guidance to the student (either formally or informally) and begins to know the students’ work well. The role of the secondary mentor ranges considerably. A secondary mentor may be closely involved in the student’s research or simply be a reader for the comprehensive exam or a faculty member to whom the student turns to get a fresh perspective on his/her work. Students may choose a secondary mentor from a department outside of EDLF and/or Curry. Alternatively, students may choose a secondary mentor from within EP-ADS. If the secondary mentor is within EP-ADS, he/she may be a second reader for the comprehensive exam. Secondary mentors may play other roles, as well. For instance, secondary mentors may provide students with their teaching experience or be a collaborator on a paper or other project.

Student apprenticeship experiences lead all students to develop an independent line of research that they will develop over the course of their graduate training. This work will link closely to topics explored in their research apprenticeship, often building on skills and/or using existing data sets emanating from those experiences.

Student Field Experience

All students starting in Fall, 2014 who are enrolled in VEST will engage in a partnership experience within one of several collaborating organizations (either a school district or state agency, for instance). During the Spring or Summer of a student’s second year in the Ph.D. program they would become part of a research team at the organization assigned to work on a specific project. The partnership would extend 8-14 weeks for about 20 hours per week with the potential for mutually agreed upon extensions. Students will be jointly mentored by a Curry faculty member and a researcher at the organization. The goal of this experience is to provide students with insights on the research and evaluation process within the organization, multidisciplinary collaborations around research, and understanding of how research connects to key stakeholders. Students will be given substantive roles on research projects commensurate with their abilities. Whether the students will work onsite or not will
be negotiated. (Non-funded VEST fellows are encouraged but not required to complete the student field experience.)

Program Logistics

Assignment and Selection of an Advisor

EP-ADS students will be assigned an academic program advisor (referred to here as “program advisor”) and research mentor (referred to here as mentor). The program advisor will work closely with the student to design a program of study that both meets the Ph.D. requirements for the Curry School and the individual students’ experiences, needs and interests. The mentor(s) work with the student to develop the students’ line of research, identify research activities that will help the students develop desired competencies, and help the student select project work that will lead to conference presentations, papers, and other products. (Often, students have a program advisor who is also their research mentor.)

The Curry School of Education has guidelines in place to ensure high quality advising and mentorship. Most junior faculty mentor students in collaboration with a more senior faculty member initially. Therefore, some students will have an program advisor, a junior research mentor and a senior research mentor whereas other students will have one person who serves as their program advisor and research mentor.

EP-ADS academic program advisors and research mentors work in a coordinated fashion and in ways that are in the best interest of the student. If you are a student with more than one person serving in these advisory/mentor roles, it is your responsibility to maintain and coordinate communication among your advisors/mentors. For instance, students will invite each advisor/mentor to the annual program meetings (described below). Students should run important programmatic decisions past both their advisor and mentor(s).

Some students will have a single person serve as their academic program advisor and mentor. In that case, students will acquire their secondary mentor around the middle of their third year. This secondary mentor will offer breadth in the students’ repertoire of skills. Further, the secondary mentor will be an additional person familiar with the students’ work, thus enabling the mentor to write letters of recommendation for the student.

Student interests change over the course of graduate school. If the advisor, mentor or student identifies another faculty member who is a better fit for academic advising and/or mentoring, the faculty member or student may request a change of advisor/mentor. The process involves the students’ initiation of individual conversations with and receipt of approval from the EP-ADS program coordinator, current advisor/mentor and proposed advisor/mentor. In the case of changing advisors, students will need to complete an application to change advisors through the Curry Admissions Office.

Assessment and Review of Progress

Each student engages in a mentored planning process. In the beginning of the program (for first year students) or in May (for students in the second year or beyond) students complete a competency matrix and annual plan. Students complete their competency matrix individually and meet with their advisors to devise their annual plan. The competency matrix involves a self-assessment of skills and abilities. The annual plan involves mapping out the papers and projects on which students will work. These documents help faculty and students plan a program of study and a line of research.
Each student gathers two or more program faculty together (including his/her program advisor and mentor) for an annual review meeting each May. In addition to the program advisor and mentor, faculty encourage students to choose an advisor plus one or two faculty members who are new to the student. This provides students to learn from the wide variety of faculty members in EP-ADS and this choice offers fresh perspectives. Students prepare for this meeting completing an annual review document (called the Annual Review Meeting Preparation & Feedback Document) and by updating their EP-ADS Competency Matrix and Annual Research Plan Table to reflect their accomplishments over the past year and their goals for the upcoming year. Students complete these materials and send draft versions of these materials to the faculty member who will be attending the annual meeting (2 days in advanced or more). Students bring paper versions of their completed annual review document, their updated annual plan, and updated competency matrix. First year students will also bring their proposed program of study by completing the Course Guidelines document.

First year students will begin by giving a short (10 min.) description of their background, educational goals, and professional aspirations. They will present their proposed program of study and area of specialization and then will receive input and approval from the steering committee. If a student is requesting transfer credit for a course taken at another university, s/he must also present the syllabus for that course and explain how it fits into the proposed program of study.

At the annual review meeting in subsequent years, students will begin by giving a ten-minute description of the progress made toward their goals, as well as describe their career goals, and review their anticipated timeline for completion of program requirements (i.e., coursework, the comprehensive examination, and the dissertation). Students can also bring up any questions they have regarding their specialization, coursework, development of competencies, etc.

During this meeting, students will receive oral feedback on their progress in the areas outlined in the competency matrix, including substantive work in education, designing and conducting research, analysis, and dissemination. Students will be asked to rate their competencies in five areas (content knowledge, research skills, writing, teaching and career development). Faculty will rate student progress in those areas, as well. A written summary of this meeting will be provided afterward. The summary will provide the student with formative feedback about his/her progress as well as recommendations for next steps.

Note that the Curry School of Education also conducts an annual review process involving listing of research goals and accomplishments. All students are required to complete the Curry student annual review documents, as well.

Record of Progress

Students are required to maintain a record of progress form. Review this form each semester with your advisor to be sure that you are meeting all program requirements. It is the student's responsibility to maintain this record and to ensure that all appropriate signatures are obtained at each key point during the program (e.g., completion of comprehensive exams, formation of dissertation committee). The form is submitted to Curry along with their dissertation materials at the time of graduation. A pdf version of this form is available here:

Program Components and Sequence

All EP-ADS students follow the same sequence of program activities. Some students move more quickly through the sequence than others depending on prior knowledge and experience, nature of research findings that emerge, type of research problems selected, and one’s own pace of work. The typical timing for activities are described below.

- Year 1: Coursework and engagement in directed research apprenticeship. Typically, in their first year, students begin work on a paper on which they are co-author—a paper submitted for publication within their first or second year. Some students begin a first authored paper in year 1, depending on prior experience. These first author papers may be papers that translate research to practice for practitioner outlets or, in some cases, may be full research papers.
- Year 2: Coursework and engagement in directed research apprenticeship. Students work on a first-author paper. By the end of year 2, all EP-ADS students are required to submit a lead author manuscript for publication and be a contributor to another manuscript. Both must be submitted for publication by the end of year 2.
- Year 3: Coursework and engagement in directed research apprenticeship. Students typically engage in student teaching. When students complete all required coursework, students take their comprehensive exam (often in the middle or end of year 3).
- Year 4: Dissertation work including the preparation and defense of a dissertation proposal (in fall) and completion and defense of a dissertation in the spring or summer (of year four).

Program of Study

Students work with their advisors to develop a program of study. The program of study has two goals: (1) to develop an individualized doctoral training plan that is unique to the interests and goals of each student, and (2) to ensure that all program, school and university requirements are met during the doctoral training experience. Thus, the student’s program of study is individualized yet designed to conform to the general guidelines of The University for conferral of the PhD if all requirements are met at a sufficiently high level.

The program of study must meet the core requirements of the EP-ADS program as well as those of the Curry School of Education. As mentioned, students work with their advisor to develop a program of study and then present their program of study at their annual review meetings. Students make any course replacement requests to their advisor. If the advisor is unsure about the decision, the student asks the program coordinator. Students requesting transfer credit for a course taken at another university must call this issue to faculty attention and bring the syllabus and grade earned for that course to the end-of-the-year annual meeting.

The program of study involves foundation courses, courses in human development, methods and statistics courses, a methods specialization, an interdisciplinary specialization, proseminar, research credits, teaching internship, and dissertation credits. An example of one student’s program of study is provided in Appendix A. Appendix B provides a list of courses from Curry and around UVA that may be of interest to students in EP-ADS. (See the UVA Student Information System [SIS] or “Lou’s list” for current course offerings.) Appendix C provides a list of methods and statistics course offerings (updated August 2015). Appendix D provides a table to help students plan out their courses.
To meet Curry Ph.D. requirements, students must earn a minimum of 72 credits. Fifty-four (or more credits) must be based on coursework (which includes foundation courses, human development, methods & statistics, the methods specialization, the interdisciplinary specialization, proseminar and up to 3 credits of apprenticeship research credits per semester). Internship and dissertation credits cannot be counted toward the 54 credits of coursework. At least 36 of these 54 credits must be completed after admission to the doctoral program. Up to 12 dissertation credits may be applied toward the 72 credits required. EP-ADS students typically take 24 dissertation credits. Students are required to register for 12 credits per semester to maintain status as a full time student.

Students entering the EP-ADS doctoral program with a master’s degree can apply up to 24 credits to their doctoral program. As mentioned earlier, students present syllabi and their grade earned for any potential transfer credit at their annual review meeting and explain how these courses fit into their proposed program of study. The student’s advisor and other faculty at the annual review meeting determine whether credits can be counted for credit in the doctoral program. The decision to substitute one course for another depends on the extent to which the courses are comparable to specific EP-ADS courses. Students complete an Application for Transfer Credit form found here: http://curry.virginia.edu/uploads/resourceLibrary/Application_for_Transfer_Credit_for_Graduate_Students.pdf. Then, students document credit transfers on the Record of Progress document, which is then signed by the student's advisor.

Students are responsible for ensuring that they meet the Curry Ph.D. requirements as described in the Graduate Record: http://records.ureg.virginia.edu/index.php. Most doctoral programs at Curry require the Preliminary Examination and some require the Research Examination. Students admitted to EP-ADS have already demonstrated the potential to succeed in doctoral study. Further, The EP-ADS doctoral program is designed to ensure that trainees achieve strong competencies in research design and methodology through coursework, directed research, and research apprenticeship experiences. Therefore, the program does not require that students take the Preliminary exam or the Curry School qualitative or quantitative research examination, unless a student’s program committee deems this necessary to establish a student’s research competencies.

Pre-dissertation Research Manuscript

All Curry doctoral students are required to complete a pre-dissertation research project that results in one lead-author manuscript submitted for publication in a peer-reviewed journal or other scholarly publication. EP-ADS students are also required to complete another paper in addition to the pre-dissertation manuscript. The student may be a co-author on the additional paper.

Both of these manuscripts must be submitted before the student initiates their comprehensive exam and undertakes dissertation work. There is no requirement that the paper be accepted for publication, but students are strongly encouraged to revise manuscripts if resubmission is likely to result in publication.

Qualifying Comprehensive Exam

Students are eligible to begin the comprehensive exam process when they have completed all coursework. Students consult with their advisor and mentor(s) about the timing of their comprehensive exam and engage in the following steps:

- Adviser notification: The student notifies their adviser and program coordinator in
writing (via emails) at least one month before he/she intends to start their comprehensive exam.

- Selection of a second reader: The student identifies a second reader (e.g., an EP-ADS faculty member with content expertise in the area in which the student intends to write) in consultation with his/her advisor. The student makes a request to the second reader asking that they serve as second reader for the comprehensive exam.

- Development of questions: The student develops one question that he/she will address during the exam. The question pertains to educational psychology and/or applied developmental science and facilitates student’s learning of theory and research in an area related to his/her desired expertise. An ideal first question has elements of theory or research that will be familiar to the student but also, stretches the student to learn a new body of work. The student solicits input on the appropriateness and the rigor of the question from his/her advisor. The advisor edits the first question and contacts the second reader to develop the second question. The second question typically builds upon the first question by considering the implication of work (in question 1) for research, policy, and practice. (Sample questions are available on the website.) Students will know the first question prior to initiating the exam. However, question 2 will not be presented to the student until the first day of the comprehensive exam.

- Examination: The advisor sends both questions to the student on the day requested by the student. The student completes the exam in a two-week period. Students prepare two essays; each essay may not exceed 10 double-spaced pages (not including references). Students must complete the comprehensive exam completely independently without support or suggestions from peers, faculty, or others. Students follow APA style for citations and references. Students turn in the completed exam to both their advisor and second reader via email in two weeks (or less).

- Performance Appraisal: When the examination is complete, the advisor and second reader will evaluate the students’ exam within two weeks. Readers will use the criteria in Appendix E. Both readers will assess the student’s performance on the rubric, resulting in composite ratings as follows: 1) acceptable/pass, 2) marginal pass/revisions required, and 3) unacceptable.
 a. If students receive acceptable/pass, students begin work on their dissertation.
 b. For marginal pass or below, students receive faculty comments and have two weeks to rewrite and/or make revisions (Revision 1). After the two weeks, the student turns in the exam and again, faculty rate student’s performance as: 1) acceptable/pass, 2) marginal pass/revisions required, and 3) unacceptable.
 i. If students receive acceptable/pass, students proceed to next steps in the program.
 ii. If students receive marginal pass/revisions required, faculty provide comments and students have one week to rewrite and/or make revisions (Revision 2). The faculty rate then rates student performance as either: 1) acceptable/pass or 2) unacceptable.
 iii. If students receive a rating of unacceptable for either Revision 1 or Revision 2, the student begins the comprehensive exam process
again. Typically, the student and readers will redesign the questions. Further, the advisor, reader and student will have a conversation involving student reflection, faculty and student problem solving. Students will return to the beginning of the comprehensive exam cycle and will have one more time to take the comprehensive exam (and proceed through the multi-step performance appraisal process described above). The student must initiate the comprehensive exam process within one month of receiving the unacceptable rating, unless otherwise determined by the student adviser.

Doctoral Dissertation

Students begin work toward their dissertation upon successful completion of the comprehensive exam. The Curry School of Education has established a standardized process across programs. This includes the composition of the dissertation committee. Please see the most recent dissertation manual for details: http://curry.virginia.edu/uploads/resourceLibrary/Curry_dissertation_manual_7.22.15FINAL.pdf. Most EP-ADS students opt for the manuscript-style dissertation because it lends itself to a smoother process toward manuscript publication. The manuscript-style dissertation is intended to be as or more rigorous than a traditional dissertation and students decide whether to complete a manuscript-style versus traditional dissertation in consultation with their advisor/mentor.
Appendix A
Sample PhD Program of Study

Student:
Advisor:
Program Entrance: Fall, 2011
Anticipated Graduation: Summer, 2015
Specialization: Early childhood mathematics, math and cognition, teacher preparation and professional development

<table>
<thead>
<tr>
<th>Foundations (9 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EDLF 7150 Educational Psychology</td>
<td>3</td>
</tr>
<tr>
<td>EDLF 7300 Foundations of Educational Research</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 7480 Community Psych and Prevention Science</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human Development (9 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EDLF 7200 Child Development</td>
<td>3</td>
</tr>
<tr>
<td>EDLF 7210 Adolescent Development</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 8670 Cognitive Development (also counts for specialization)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods & Statistics (15 Credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EDLF 8300 Statistics II: Experimental design</td>
<td>3</td>
</tr>
<tr>
<td>EDLF 8310 Statistics III: Regression and correlation</td>
<td>3</td>
</tr>
<tr>
<td>EDLF 8350 Statistics IV: Multivariate statistics</td>
<td>3</td>
</tr>
<tr>
<td>EDLF 8361 Structural Equation Modeling</td>
<td>3</td>
</tr>
<tr>
<td>EDLF 7404 Qualitative research</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods Specialization (6 credits)*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EDLF 5500 Field Experiments</td>
<td>3</td>
</tr>
<tr>
<td>EDLF 8315 Causal Inference in Educational Policy Research</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interdisciplinary Specialization (12 hours)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EDLF 7200 Child Development (also counts as a development course)</td>
<td>3</td>
</tr>
<tr>
<td>EDIS 7450 Problems and Issues in Math Education</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 3500 Early Symbolic Development</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 8670 Cognitive Development (also counts for specialization)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proseminar</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EDLF 5500 Proseminar in Applied Developmental Science and Education Policy (2 credits annually in years 1&2)**</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Research Credits (18 credits)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EDLF 9998 Doctoral Research Apprenticeship (6 credits annually for years 1, 2 & 3)</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Internship & Dissertation Credits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EDLF 9740 Internship in College Teaching (co-taught EDIS 5320 Teaching Math in Elementary School)</td>
<td>3</td>
</tr>
<tr>
<td>EDLF 9999 Doctoral Dissertation (typically 24 credits in year 4)</td>
<td>24</td>
</tr>
</tbody>
</table>

*This program of study involved the Ed Science Specialization, as required for the VEST program. The student enrolled Field Experiments and Causal Inference.

**Subject to change in 2016-2017
Appendix B
Example Courses

Below are example courses at Curry and across UVA that may be incorporated into students’ program of study. This list is not exhaustive. Not every course is listed every semester.

STAT 5310 Clinical Trials Methodology
EDLF 5500 Data Management for Analysis
EDLF 5500 Causal Inference
EDLF 7150 Introduction to Educational Psychology
EDLF 7180 Tests and Measurements
EDLF 7190 Classroom Assessment
EDLF 7300 Foundations of Educational Research
EDLF 7310 Educational Statistics: Stat I
EDLF 7320 Educational Statistics Laboratory
EDLF 7330 Single-Subject Research
EDLF 7350 Seminar in Educational Research
EDLF 7401 Program Evaluation
EDLF 7403 Survey Design & Instrument Construction
EDLF 7404 Qualitative Analysis
EDLF 7405 Seminar in Program Evaluation
PSYC 7720 Quantitative Methods II: Experimental Design
PSYC 7760 Intro to Applied Multivariate Methods
PSYC 7480 Community Psychology and Prevention Science
EDLF 8150 Advanced Tests and Measurements
EDLF 8300 Experimental Design: Stat II
EDLF 8310 Correlation and Regression: Stat III
EDLF 8320 Non-Parametric Statistics
EDLF 8330 Bayesian Statistics
EDLF 8340 Measurement Theory I
EDLF 8350 Multivariate: Statistics IV
EDLF 8360 Seminar in Advanced Statistics
EDLF 8361 Structural Equation Modeling
EDLF 8370 Advanced Seminar in Educational Research & Measurement
EDLF 8400 Program Evaluation Design
EDLF 8440 Advanced Qualitative Analysis
EDLF 8450 Qualitative Data Analysis with Computers
EDIS 8853 Seminar: Research Grant Writing (or alternative grant writing course)
EDLF 9740 Internship in College Teaching
EDLF/EDIS/EDHS 9998 Doctoral Research Apprenticeship (register under advisor’s name & dept)
EDHS 9999 Doctoral Dissertation

Developmental Processes
EDLF 5470 Motivation in Achievement Contexts
EDLF 5700 Race, Ethnicity & Diversity in Youth Development
EDLF 7160 Life Span Development
EDLF 7200 Child Development
EDLF 7210 Adolescent Development
EDLF 8160 Advanced Child Development

Language and Cognitive Development
PSYC 5150 Advanced Cognition
PSYC 5325 Cognitive Neuroscience
PSYC 7110 Psycholinguistics
PSYC 7150 Cognitive Processes
PSYC 7250 Cognitive Research Methods
EDHS 8030 Neurogenic Communication Disorders
EDLF 7170 Concepts of Learning
EDLF 7280 Creativity and Problem-solving
EDHS 8090 Language Disorders I()}
EDHS 8100 Disorders of Language II
PSYC 8605 Language Development
PSYC 8670 Cognitive Development

Social and Affective Development
EDIS 5041 Behavior Management
PSYC 5160 Emotion and Cognition
EDHS 5500 Special Topics
EDLF 7260 Mentorship in Gifted Education
PSYC 7660 Adolescent Development
PSYC 8650 Social and Personality Development

Health Promotion
EDHS 5500 Topic: Issues in Clinical Psychology
EDHS 5500 Topic: Topics in Health Promotion
EDHS 8430 Exercise Intervention in Disease

Literacy
EDIS 7700 Foundations of Reading Instruction
EDIS 7720 Word Study: Language Structures, Phonics, & Morphology
EDIS 7852 Seminar – Reading Research

Family Processes
EDHS 8730 Family Therapy: Theory and Techniques
PSYC 9501 Topical Research: Family Psychopathology
PSYC 9501 Topical Research: Child Family and Social

Community Psychology
PSYC 7475 The Psychological Study of Ethnic Minority Issues in Research & Practice
PSYC 7503 Contemporary Issues: Community Psychology
EDHS 5240 Substance Abuse in Society
EDHS 8240 Substance Abuse Counseling
PSYCH 9501 Topical Research: Law and Children
PSYC 5410 Juvenile Justice and Violence

Education Policy
EDLF 5500 US Education Policy
EDLF 5500 Issues in Applied Developmental Science and Education Policy
EDLF 7060 Theoretical Perspectives on Educational Policy
EDLF 5500 Higher Education: Policy and Practice

Other relevant courses in related areas of interest include:
ECON 8310 Public Economics I
PLAP 7440 Social Policy and Politics of Inequality in the US
PSYC 5559 Funds of Item Response Theory
PSYC 7200 Advanced Neural Mechanisms of Behavior
PSYC 7480 Community Psychology and Prevention Science I: Research and Consultation
PSYC 7502 Contemporary Issues: Neuroscience and Behavior
PSYCH 7503 Contemporary Issues: Community Psychology
PSYC 8610 Psychological Study of Children, Families, and the Law
PSYC 9501 Social Cognition and Human Inference
PSYC 9501 Perceptual Motor Development
PSYC 9501 Memory and Neural Plasticity
PSYC 9501 Reasoning and Memory
SOC 4053 Sociology of Education
EDHS 5010 Phonetics
EDHS 5050 Anatomy and Physics of Speech and Hearing Mechanisms
EDHS 5240 Substance Abuse in Society
EDHS 5500 Physical Activity and Public Health
EDHS 7420 Advanced Exercise Physiology
EDHS 7431 Exercise Principles for Health, Fitness, and Chronic Diseases
EDHS 7440 Motor Development
EDHS 7610 Physical Education for Children with Severe Disabilities
EDHS 7680 Psychopathology
EDHS 8500 Developmental Risk and Protective Factors
EDIS 5000 The Exceptional Learner
EDIS 5021 Assessment and Instruction: Birth to Age Five
EDIS 5022 Early Childhood Assessment and Instruction
EDIS 5058 Positioning/handling and Self-care Skills
EDIS 5700 Positive Behavior Support
EDIS 7000 Introduction to Instructional Design
EDIS 8010 Advanced Instructional Design
EDIS 8853 Principles of Curriculum Design
EDIS 8500 Research on in Teaching and Teacher Education
EDLF 5000 Multicultural Education
EDLF 5500 Leadership for Low Performing Schools
EDLF 7060 Theoretical Perspectives on Education Policy
EDLF 7390 Differentiating Instruction
EDLF 7601 Social Foundations of Education
EDLF 7602 History of American Education
EDLF 7603 Philosophy of Education
EDLF 7605 Anthropology of Education
EDLF 7606 Comparative Education
EDLF 8662 Politics of Education
EDLF 8657 Economics and Finance of Higher Education
EDLF 7810 School Law
EDLF 8802 Organizational Theory
Appendix C: Research Methods Courses Available from the Curry School of Education
August 5, 2015

Statistics Courses

EDLF 5310 Data Management for Social Science Research
This course introduces strategies for effectively working with large-scale quantitative data for social science research. Topics covered include: data cleaning, recoding and checking; merging data from multiple sources; reshaping data; documenting processes; writing programs and macros to reduce errors; and presenting descriptive data through tables and graphs. Students will utilize Stata, a statistical software package. This course is usually offered in fall semester of every year.

EDLF 5330 (Formerly 7310) Descriptive and Inferential Statistics
Analysis of descriptive to inferential techniques. Specific procedures include the logic of hypotheses testing, t-tests, chi-square, correlation, and simple linear regression. Emphasis is on the theoretical basis and applied usage of these procedures as a necessary foundation for more advanced study. Students will learn to use statistical software such as SPSS, Stata, or R. This course is usually offered in fall and spring semester of every year.

EDLF 7300 Foundations of Educational Research
Social education science research encompasses a varied and challenging set of knowledge and skills to master. The nature of the research problems are complex and multifaceted; addressing these questions requires a diverse and strategic combination of research traditions, designs, and methods, so no single research design course exposes students to all that might be of relevance and interest. This course has two broad goals: (1) to build a foundation on which students can begin to development an understanding of social and education science research designs and methods; and (2) to develop students’ basic competencies in specifying linkages among research questions, designs, methods, evidence, inference, and use. This course is offered every fall semester.

EDLF 7420 (Formerly 8300) Experimental Design and Statistical Analysis: Stat II
This course is designed to provide students with both a theoretical and applied understanding of experimental/randomized control designs and analysis of variance (ANOVA). Emphasis on the applied use of these principles will be facilitated through SPSS or R. This course is usually offered in fall and spring semester of every year.

EDLF 8310 Correlation and Regression Analysis: Stat III
This course is intended to be a continuation of the quantitative methods sequence that began with 5330 and 7420. It covers applied statistical methods and provides tools for students who intend to conduct their own statistical analyses, as well as those who want to become critical consumers of statistics. Topics covered include linear least-squares regression, statistical inference for regression, linear-model diagnostics, and generalized linear model. Coursework includes both problem solving and computer-based assignments that involve conducting data analysis and writing and communicating descriptions of statistical results. Students will learn to use SPSS, Stata, or R. Prerequisite: EDLF 5330 and 7420, or instructor permission. This course is usually offered in fall and spring semester of every year.

EDLF 5500 Causal Inference in Educational Policy Research
An advanced methods course on quasi-experimental statistical techniques for generating unbiased effect estimates when random assignment is not feasible. Underlying theories,
identifying assumptions, and applications are presented for techniques drawn from a variety of disciplines including economics, sociology, and psychology including regression discontinuity, instrumental variables, difference-in-difference, matching, and fixed effects. This course is usually offered in spring semester of every year.

EDLF 5500 Field Experiments
This course has three purposes. The first is to introduce students to recent methodological advances in the design and analysis of field experiments, particularly in school settings. The second is for students to read and discuss well-known field experiments that have important implications for policy, and/or our understanding of science. The third is to demonstrate that although the course is about field experiments, many of the issues that are addressed extend easily to the design and analysis of observational studies. Students will learn to use Stata for the analysis of field experiments. Prerequisite: EDLF 7420, 8310, or equivalent. This course is usually offered in spring semester of odd-numbered years.

EDLF 8360 Multilevel Modeling in Education Research
This course is designed to familiarize students with the basics of multilevel modeling. Topics include random effects ANOVA models, means-as-outcomes models, random coefficients models, intercepts- and slopes-as-outcomes models, contextual models, random effects ANCOVA models, linear growth models, nonlinear growth models and cross-classified models. Prerequisite: EDLF 8310 or equivalent. This course is usually offered in fall semester of odd-numbered years.

Additional statistics courses include **EDLF 8350 Stat IV Multivariate Statistics** and **EDLF 8361 Structural Equation Modeling**. These courses feature statistical and measurement models. Details are listed below.

Measurement Courses

EDLF 7180 Tests and Measurements
This introductory course concentrates on the evaluation and interpretation of assessment tools. Topics include reliability and validity; social and ethical considerations of testing; summarizing and interpreting measurements; and the use of standardized tests, rating scales, and observational scales. This course is usually offered in fall semester of every year.

EDLF 7403 Survey Design and Instrument Construction
This course provides students with practical experience in survey research. Topics focus on survey design, administration, analysis, and reporting. Specific topics include item writing guidelines, cognitive interviews and pilot testing, survey implementation and planning, sampling methods, data analysis, and presentation of survey results. Particular attention is given to strategies for ensuring reliable survey responses and valid inferences. This course is usually offered in fall of every year.

EDLF 8340 Measurement Theory
Fundamentals of item response theory and generalizability theory. Topics include the Rasch, two-parameter logistic, and three parameter logistic models for binary items and the partial credit, rating scale, and generalized partial credit models for polytomous items. Additional topics include scale linking and score equating, dimensionality assessment, and connections to other latent variable models. Generalizability topics include estimation of variance components for generalizability studies, and estimation of reliability coefficients for decision studies. Application of these methods to educational and psychological testing and the use of statistical software is emphasized. Students will learn to use statistical software such as R and jMetrik. Prerequisites: EDLF 7180 and EDLF 8310 or instructor permission. This course is usually offered in spring of even-numbered years.
EDLF 8350 Stat IV Multivariate Statistics

Presents the theory and rationale of selected multivariate statistical techniques. Topics include multivariate analysis of variance, canonical correlation, discriminant analysis, exploratory factor analysis, and confirmatory factor analysis. Emphasizes computer-assisted analysis and the application of appropriate statistical methods to research data. Prerequisite: EDLF 7420 and 8310, or instructor permission. This course is usually offered in spring semester of every year.

EDLF 8361 Structural Equation Modeling

The major topics include exploratory/confirmatory factor analysis models, a variety of structural equation models, growth curve models, and multi-sample modeling analysis. The major focus of the course is both on the conceptual understanding of latent variable modeling and on practical application of these models in research and measurement. Students will work with data sets and computer programs to gain practical research experience. Prerequisite: EDLF 8310 and 7180 or equivalent. This course is usually offered in spring of odd-numbered years.

Qualitative and Program Evaluation Courses

EDLF 7060 Theoretical Perspectives on Educational Policy

This course introduces students to the use of theory in the educational research process by examining interpretive and critical theoretical approaches in educational policy research. It examines current theories including micro-macro theories, critical race theories, feminist and postmodern theories and their applications in research methods such as critical discourse analysis, critical ethnography, etc., as they pertain to policy research, policy analysis, and policy evaluation.

EDLF 7404 Qualitative Analysis

This class serves as an introduction to the central concepts of qualitative methods in research and evaluation. Primary emphasis is on the development of skills required to conduct qualitative research, with a focus on research design, specific methods of inquiry, and approaches to analysis. The philosophy and epistemology of qualitative approaches are also discussed. Empirical readings provide examples of qualitative research within education and related fields. This course is usually offered fall and spring semester of every year.

EDLF 7402 Introduction to Program Evaluation

An overview of current program evaluation approaches, this class is designed to provide an overview of the theories behind and approaches to evaluation as well as to begin to train students in evaluation design and methods. Theoretical, methodological, and empirical readings emphasize the terminology of educational evaluation and the variety of theoretical and design approaches to evaluation. Consideration is also given to the application of evaluation approaches and designs to non-educational settings. This course is usually offered in fall semester of every year.

EDLF 7410 Mixed Methods Research Design

This course provides an introduction to mixed methods in social science/educational research. We will consider the types of questions that mixed methods can answer and discuss the benefits/challenges of mixed methods research. We will cover research design, sampling, and analysis, including reading exemplars of mixed methods research. Students will apply the theoretical/methodological tenets learned by designing their own mixed methods study. This course is usually offered in spring semester of even-numbered years.

EDLF 8400 Program Evaluation Design
Explores problems of designing, conducting, and reporting evaluation research studies. Time is spent examining philosophies of science that underlie evaluation studies; conceptualizing a total evaluation study; planning for the use of time and resources in conducting an evaluation study; assembling the evidence for or against a particular proposition; analyzing costs; and learning how to avoid common pitfalls in working with clients and program participants to design and conduct an evaluation study. This course is usually offered in fall semester of odd-numbered years.

EDLF 8440 Advanced Qualitative Analysis
Advanced course in methods and practices of qualitative research. Students determine their own philosophy of inquiry and become increasingly proficient in the application of qualitative methods. Assumes an introductory course in qualitative methods. Focuses on research design and proposal development, data collection and analysis techniques, and presentation of findings. The course is field-based and guides students through the complete qualitative research cycle. This course is usually offered in spring semester of every year.

EDLF 8450 Qualitative Analysis with computers
An advanced course in qualitative research methods that emphasizes the application of qualitative analysis using a qualitative data analysis software package as a tool. Readings focus on various approaches to qualitative analysis and the issues surrounding software use in relation to these approaches. A general knowledge of qualitative research design and methods and comfort with computers is assumed. Part of each class serves a workshop to learn a qualitative data analysis program and, therefore, the course is most useful for students who have data to analyze. Prerequisite: EDLF 7404 (Introduction to Qual) or equivalent course is required; EDLF 8440 (Advanced Qual) is recommended. This course is usually offered in fall semester of odd-numbered years.
Appendix D: Table for Course Planning

<table>
<thead>
<tr>
<th>Foundations</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Required</td>
<td>3</td>
</tr>
<tr>
<td>EDLF 7150 Introduction to Educational Psychology - Applied Dev Science (infused w/ research design & methods) (Palacios)</td>
<td></td>
</tr>
<tr>
<td>EDLF 7300 Research Foundations in Education (Moon)</td>
<td></td>
</tr>
<tr>
<td>PSYC 7480 Community Psychology and Prevention Science (Repucci)</td>
<td></td>
</tr>
<tr>
<td>Human Development</td>
<td>9</td>
</tr>
<tr>
<td>Choose 2 of 3</td>
<td>6</td>
</tr>
<tr>
<td>Child, Adolescent & Adult Development (Rimm-Kaufman, Williams, Tolan, Whaley)</td>
<td></td>
</tr>
<tr>
<td>Topical Development Course</td>
<td>3</td>
</tr>
<tr>
<td>Related to Specialization</td>
<td></td>
</tr>
<tr>
<td>Examples include: Development and Psychopathology, Advanced Cognitive</td>
<td></td>
</tr>
<tr>
<td>Some in Curry, some in Psych dept.</td>
<td></td>
</tr>
<tr>
<td>Methods & Statistics</td>
<td>15 (or possibly 9 or 12, depending on prior experiences)</td>
</tr>
<tr>
<td>Stats 2—Intro to Experimental Design</td>
<td></td>
</tr>
<tr>
<td>Stats 3—Regression Analysis</td>
<td></td>
</tr>
<tr>
<td>Stats 4 – Multivariate Statistics</td>
<td></td>
</tr>
<tr>
<td>Qual 1 (Deutsch)</td>
<td></td>
</tr>
<tr>
<td>Data Management (Bassok)</td>
<td></td>
</tr>
<tr>
<td>Optional-enter at appropriate level to match skills</td>
<td></td>
</tr>
<tr>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Required</td>
<td></td>
</tr>
<tr>
<td>Strongly recommended (unless competency met elsewhere; at discretion of VEST steering committee)</td>
<td></td>
</tr>
<tr>
<td>Methods Specialization</td>
<td>6 (or more depending on interests)</td>
</tr>
<tr>
<td>Seminar in Advanced Statistics</td>
<td></td>
</tr>
<tr>
<td>One additional methods course</td>
<td></td>
</tr>
<tr>
<td>Examples of Methods Specializations:</td>
<td></td>
</tr>
<tr>
<td>1) Required for VEST--Ed Science specialization--causal inference + field experiments (6 credits)</td>
<td></td>
</tr>
<tr>
<td>2) Mixed methods specialization--Qual 2, mixed methods (6 credits)</td>
<td></td>
</tr>
<tr>
<td>3) Measurement specialization--measurement theory, IRT (6 credits)</td>
<td></td>
</tr>
<tr>
<td>4) Customized specialization designed with your advisor—for example, SEM & HLM Note. VEST fellows must select Ed Science specialization and may choose an additional methods specialization if they enter the program having completed high-level statistics.</td>
<td></td>
</tr>
</tbody>
</table>
| Interdisciplinary Specialization | 12 | May count one development course toward four courses in the specialization.
|----------------------------------|----|--
| 3 | | Course 1-Dev course (listed above)
| 3 | | Course 2
| 3 | | Course 3
| 3 | | Course 4
| From handbook: A specialization should consist of an organized set of coursework in a particular department or programmatic area, not a compilation of unrelated courses or topics. Relevant departments include Economics, Sociology and Psychology. Can take 6 credits in Curry, 6 credits elsewhere.

Proseminar (in first 2 years)	4	Subject to modification in 2016-17
		Proseminar
		Required for VEST fellows

| Research Credits | 18 |
|------------------|----|-----------------------------------
| | | Directed Research (req 3 credits per semester in first three years, 3 X 2 X 3)
| | | 20 hours a week minimum for VEST fellows

| Internship/Dissertation Credits | 21 |
|---------------------------------|----|-----------------------------------
| | | Internship in Teaching (3 credits)
| | | One semester max if enrolled in VEST.
| | | Doctoral Dissertation Credits (min of 12 credits) (typically 12 X 2 in last year)

| Total | ~55 content & methods course credits + 18 research credits + 27 intern/diss credits |

Curry guidelines state: The PhD program requires a minimum of 72 credits, although programs may require more. Students must complete at least 54 credits of coursework. This includes content courses and research methodology courses, and up to 3 credits of research apprenticeship per semester, but does not include internship and dissertation credits. At least 36 course and apprenticeship credits must be completed after admission to the program.
Appendix E

Rubric for the Comprehensive Exam

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Unacceptable; important aspects are neglected or unfinished</th>
<th>Marginally acceptable; not all aspects of the task have been fulfilled</th>
<th>Adequate/ Acceptable; meets all requirements</th>
<th>Exceptional; exceeds requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Scholarly Aspects
- Describes the topic in a way that is specific, significant, and novel
- Grounds writing in current theory
- Grounds writing in current empirical research
- Avoids overgeneralizing or otherwise arriving at conclusions that overstate existing evidence
- Qualifies statements that are speculative or that apply to narrow circumstances
- Writing and synthesis demonstrates deep knowledge about the topic
- Shows knowledge and correct application of methods (if applicable to the question)

Rhetorical Aspects
- Structures the argument logically and effectively with effective cohesion of ideas
- Uses logical transitions between and within paragraphs & sections
- Creates a logical text structure signaled by appropriate headings and subheadings
- Displays sense of intended readership through appropriate assumptions about prior knowledge
- Embeds in-text citations appropriately to document assertions and/or indicate quotes
- Engages the reader effectively (e.g., uses active verbs, varies sentence structure)
- Appropriately incorporates tables, charts, figures, and other graphics to complement ideas presented in text (only if applicable)

Technical Aspects
- Uses correct spelling and punctuation
- Chooses words precisely (e.g., correct vocabulary with explanations, definitions, or examples, if needed)
- Uses proper grammar and usage
- Adheres to APA style

<table>
<thead>
<tr>
<th>Overall Ratings</th>
<th>Scholarly Aspects</th>
<th>Rhetorical Aspects</th>
<th>Technical Aspects</th>
<th>Composite (mean of the three scores)</th>
</tr>
</thead>
</table>

Note. Composite ratings of 2 and 3 correspond to acceptable/pass, ratings of 1 corresponds to marginal pass/revisions required, and ratings of 0 correspond to unacceptable. The correspondence is only approximate.
Appendix F
Curry-Wide Rubric for Pre-Dissertation Paper & the Dissertation
Rubric for Ph.D. Research Documents

<table>
<thead>
<tr>
<th>Levels</th>
<th>Exemplary (3)</th>
<th>Proficient (2)</th>
<th>Developing (1)</th>
<th>Unacceptable (0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domains</td>
<td>Abstract</td>
<td>Abstract includes research questions, description of sample, major findings, and implications of the results. Limitations of the study are clearly identified. All information is stated concisely within the word limit.</td>
<td>Abstract includes all essential elements (research questions, sample description, major findings, implications, and limitations) but may be misleading due to lack of precision in language. Information is within the word limit.</td>
<td>Abstract is missing one or more essential elements and the language used lacks a strong scholarly voice. Information is significantly over the word limit.</td>
</tr>
<tr>
<td>Intro: Problem Statement, Significance, Purpose of Study</td>
<td>Articulates a specific, significant, and novel issue by connecting the issue to the larger theoretical and/or empirical literature. Problem statement logically flows from the introduction and clearly and succinctly establishes relevance to the larger body of literature.</td>
<td>Identifies a relevant research issue and establishes connections with the larger body of theoretical and/or empirical literature. Problem statement is present and a stronger or clearer connection could be made. The topic is relevant but is not necessarily novel for the field.</td>
<td>Although a research issue is identified, the statement is too broad or the description fails to establish the importance of the topic. Connections to the larger literature are insignificant, irrelevant or unclear. The topic may be too simplistic to make a contribution to the larger field.</td>
<td>There are no connections made to the larger body of literature that is related to the topic at hand. Statement of the problem, the significance of the study, and/or the purpose of the study is inappropriate, disconnected with one another, or missing. Topic is too simplistic to make a contribution to the larger field.</td>
</tr>
<tr>
<td>Intro: Research Questions, Definitions, Assumptions</td>
<td>Articulates clear, feasible, and succinct research questions and definitions (i.e., constructs, variables) given the purpose of the proposed study. A thorough and reasonable discussion of assumptions is provided. All</td>
<td>Research questions are stated, connected to the identified issue and supported by the literature. Definitions (i.e., constructs, variables) have been operationalized.</td>
<td>Elements are poorly formed, ambiguous, or not logically connected to the description of the issue or the study’s purpose.</td>
<td>Research questions, definitions and assumptions are omitted, misaligned, or inappropriate given the problem statement and purpose of the study.</td>
</tr>
</tbody>
</table>

2 Only relevant sections pertaining to the specific type of document (e.g., preliminary exam, comprehensive exam, dissertation proposal) can be evaluated.
<table>
<thead>
<tr>
<th>Literature Review: Structure</th>
<th>The structure of the review is intuitive and grounded to each of the key constructs or the proposed study. There is a logical flow that develops a well-supported argument leading directly to the research question(s).</th>
<th>The structure of the review is workable in that there exists relevant literature related to the constructs. The argument can be followed that leads to the research questions.</th>
<th>The structure of the literature is weak—it does not identify important ideas, constructs, variables that are related to the research purpose, questions, or context.</th>
<th>The structure of the review is incomprehensible, irrelevant, or confusing and does not have logical flow that leads to the research question(s).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature Review: Substantive Review</td>
<td>The narrative integrates both critical and logical details from scholarly (i.e., peer-reviewed) theoretical and empirical literature. Attention is given to different perspectives, conditions, threats to validity, and evidence of prior research. The review clearly establishes the need for the study in terms of adding to the substantive knowledge and/or the need for a different methodological approach. The review is in the author’s own words.</td>
<td>Key constructs and variables are connected to relevant scholarly (i.e., peer-reviewed) theoretical and empirical literature. Studies cited are generally described with sufficient detail so that the relevance to the theoretical and/or methodological issues can be understood. The review may include some unnecessary content or may have instances of poor paraphrasing. An explanation of how the proposed research adds substantive knowledge to the field could be made clearer. The synthesis provided is sparse or weak.</td>
<td>Key constructs and/or variables in the review are not connected to the scholarly (i.e., peer-reviewed) theoretical and empirical literature. Literature used was unreliable or from inappropriate sources. The review of the presented literature is insufficient in that the reader does not see the direct connection to other studies or to the relevant theoretical or methodological issues. There may be a lack of differing viewpoints presented and/or an over-reliance on quotes. Inconsistent acknowledgement of other’s work. There is little synthesis demonstrated.</td>
<td>Key constructs or variables were missing or were based on non-scholarly literature. Much of the detail of reviewed literature is missing so that the reader cannot see the relevance to the theoretical or methodological issues. There was not a logical flow of connected ideas that lead to the proposed research questions. Lack of acknowledgment of other’s work or presenting other’s ideas as one’s own. There is very little synthesis of ideas.</td>
</tr>
<tr>
<td>Literature Review: Synthesis</td>
<td>The narrative provides synthesis of themes, describing differences among different lines of research, or otherwise comparing, contrasting, or pointing out areas with rich research versus areas in need of research. The narrative offers a framework or advanced organizer establishing the scope of the content. Concluding</td>
<td>The synthesis provided is present but weak and/or inconsistent. For instance, the synthesis may be organized around superficial commonalities. Content may be grouped into paragraphs but the paragraphs may not be only weakly linked to each</td>
<td>There is little synthesis demonstrated.</td>
<td>There is very little synthesis of ideas.</td>
</tr>
<tr>
<td>Methods: Research Design</td>
<td>The purpose statement, research questions, and proposed design are mutually supportive, coherent, and aligned and follow directly from the argument made in the literature review. Attention is given to eliminating alternative explanations and controlling extraneous variables, if appropriate. Appropriate and important limitations of design are clearly stated. Role of researcher is identified, if appropriate.</td>
<td>The purpose statement, research questions, and proposed design are incomplete or misaligned. There is limited or no attention given to considerations of rival hypotheses and extraneous variables, if appropriate. Important limitations and assumptions are not identified. Role of the researcher is not identified.</td>
<td>The purpose statement, research questions, and proposed design are not aligned and mutually supportive. Rival hypotheses, extraneous variables (where appropriate), limitations and assumptions are missing. Role of the researcher is not identified.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>RATING:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check here if the category is not applicable:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Methods: Context, Participants, Instrumentation, Procedures	Description of the context, sample, instrumentation, and procedures, including analyses, are meaningful (i.e., appropriate given hypotheses or study intent). Description of participants, instrumentation (e.g., psychometrics; interview and observational, procedures, and analyses are provided with enough detail that a reader could replicate the study. There is alignment between each analytic step and the appropriate research question. Pilot testing procedures are detailed for researcher-developed instrumentation.	Description of the context, sample, instrumentation, and procedures, including analyses, are identified and relevant (i.e., appropriate given hypotheses or study intent). There may be missing relevant detail on participants, instrumentation, procedures, or analyses. Limited information regarding pilot testing of researcher-developed instruments, if applicable.	Descriptions of the context, sample, instrumentation, or procedures, including analyses, are misaligned or lack relevance to the research questions. Contains some information on participants, instrumentation, and procedures but is insufficient for replication. No description of pilot testing of researcher-developed instrumentation.
RATING:			
Check here if the category is not applicable:			

<table>
<thead>
<tr>
<th>Results: Quantitative</th>
<th>The section contains an introductory statement to remind readers of the scope of the investigation.</th>
<th>Introduction of the scope of the investigation may be missing. Descriptive analyses</th>
<th>No introduction of the scope of the investigation. Descriptive statistics are appropriate but may</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATING:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BASIC</td>
</tr>
<tr>
<td>Descriptive Statistics</td>
<td>Descriptive analyses are appropriate, accurate, cited in APA format within the text, and are aligned to the research question(s). Appropriate reporting of relevant information is present (e.g., mean, standard deviations, correlations). Tables and figures are correct, display relevant variables, and are identified and explained within the text. Proper credit is given where appropriate to tables or figures. There is no interpretation of the results.</td>
<td>Descriptive analyses are appropriate, accurate, and aligned with the research question(s). There are a few missing relevant information (e.g., means without SD; effect size) within the text. Tables and/or figures may have minor errors or confusing aspects but appropriate credit is given where warranted.</td>
<td>Consistently be missing relevant information (e.g., no indication of df). Confusion between tables and figures and/or redundant information is presented across the two. Inconsistent inclusion of statistics within the text. Credit is missing from tables and/or figures, where warranted. Some interpretation of the results is present.</td>
</tr>
</tbody>
</table>

Check here if the category is not applicable: ___ |

| **Results: Quantitative Inferential Statistics** | The section contains an introductory statement to remind readers of the scope of the investigation. Inferential analysis is appropriate for addressing each research question and a brief discussion of the assumptions of a test is presented (if necessary). Appropriate reporting of relevant information is present (e.g., alpha level, significance or not, test value, degrees of freedom, confidence interval, effect size, post hoc analyses). Tables and figures are correct, display relevant information, and are identified and explained within the text. Proper credit is given where appropriate to tables or figures. There is no interpretation of the results. | Introduction of the scope of the investigation may be missing. Inferential analysis and relevant statistical information are given but may be incomplete (e.g., lacking appropriate post hoc tests, missing effect size estimates). Tables and figures may have minor errors or confusing aspects but appropriate credit is given where warranted. There is no interpretation of the results. | No introduction of the scope of the investigation. Inferential analyses may be incomplete or incorrect. Results do not seem to be linked to the research questions. Confusion between tables and figures and/or redundant information is presented across the two. Inconsistent inclusion of statistics within the text. Credit is missing from tables and/or figures, where warranted. Some interpretation of the results is present. | No introduction of the scope of the investigation. Inferential analyses are inappropriate (e.g., means computed on categorical data) or computed inaccurately. Tables and/or figures are omitted or a description of the statistics within the text is omitted. Credit is missing from tables or figures, where warranted. Interpretation of the results is present. |

Check here if the category is not applicable: ___ |

<p>| Results: Qualitative | Indicates how results will be organized and how the results derived from the analysis. The presentation of results is consistent with the methodology indicated. Exemplary evidence is presented | Greater clarity in the organization of the results and how the results were derived from analyses could be provided. There is alignment between the results. | No discussion of how the results will be presented or how the results were derived from the analyses. There could be a tighter connection between the presentation of findings that the results. | Completely omitted are how the results will be presented and how the results were derived from the analyses. There is a lack of connection between the presentation of results. |</p>
<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check here if the category is not applicable:___</td>
<td>within the text to support findings with an explanation of how the excerpts support each finding or assertion. Each exemplar illustrates a unique finding rather than multiple findings tied to one exemplar.</td>
</tr>
</tbody>
</table>
| **Discussion:** Interpretation of Findings | **RATING:**

Discussion includes a brief restatement of the study's findings. Patterns and relationships in the data are explained and conclusions do not go beyond the data. The interpretation of the findings is well connected to the research question(s) and is situated back into the literature clearly showing the unique contribution of the study. Discrepancies between the anticipated findings (i.e., hypotheses) and the actual findings are explained. Discussion of implications is present, if appropriate. |
| Check here if the category is not applicable:___ | Limited overview of some findings is present but conclusions go beyond data. Study's findings are not situated back into the literature. No explanation of discrepancies in findings is presented. Discussion of implications is limited. |
| **Limitations** | **RATING:**

Consideration to what extent the results are conclusive and can be generalized is presented, if appropriate. Potential confounds or methodological limits are fully discussed. Future research is suggested. |
| Check here if the category is not applicable:___ | No consideration is given to the extent to which results are conclusive and can be generalized (if appropriate). No indication of methodological limits or future research. |
| **References** | **RATING:**

Reference list includes all and only cited current and relevant works. Seminal studies are included if applicable. Original literature served as the predominant source of information. |
| **RATING:**

Reference list may contain some inappropriate sources (non-scholarly). Relevant seminal works are missing. Sources tend to be dated. Some works cited with text are not listed in reference list or |
<p>| Reference list consists of mainly secondary sources or non-scholarly sources. Relevant seminal works are missing. Sources tend to be dated. There is not a one-to- |</p>
<table>
<thead>
<tr>
<th>Writing Style: Organization, APA Style</th>
<th>The document is written with logic, clarity, and precision using scholarly language. The text is logical and coherent. Appropriate transitions and subheadings allow for comprehension from one idea to the other. There is consistent application of the latest APA scholarly writing and publication guidelines.</th>
<th>The document is generally written with logic, clarity, and precision using scholarly language although there may be instances of redundancy or lack of transitions or subheadings. Mostly follows latest APA scholarly writing and publication guidelines.</th>
<th>The document tends to be logically organized but there is a lack of precision and clarity. The use of scholarly language is sporadic throughout the document with missing transitions and/or subheadings. Inconsistent or inappropriate application of latest APA scholarly writing and publication guidelines.</th>
<th>The document is not written in a scholarly fashion or lack precision and clarity. Failure to follow latest APA for scholarly writing and publication guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATING:_____</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentation: IRB</td>
<td>Appropriate IRB forms are completed and reflect the study’s purpose. There is an acknowledgment in the Methods section of IRB approval.</td>
<td>Appropriate IRB forms are completed and reflect the study’s purpose but greater detail could be added regarding study details (e.g., recruitment, confidentiality). There is an acknowledgment in the Methods section of IRB approval.</td>
<td>IRB forms are completed but do not provide sufficient information or includes irrelevant forms. No indication of IRB approval in Methods section.</td>
<td>IRB forms are missing or incomplete. No indication of IRB approval in Methods section.</td>
</tr>
<tr>
<td>RATING:_____</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Check here if the category is not applicable: ____</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments:

Committee Member Signature:
Date: